Способы и методы улучшения качества питьевой воды. Улучшение качества питьевой воды первоочередная задача для выживания человечества Основные методы улучшения качества питьевой воды

Основные способы улучшения качества воды

Основными способами улучшения качества воды являются: осветление (удаление взвешенных веществ), обесцвечивание (удаление окрашенных коллоидов; растворенных веществ), обеззараживание (уничтожение патогенных микроорганизмов) и специальные методы обработки (удаление или введение в воду необходимых элементов). Типовая схема процесса очистки воды приведена на рисунке.


Осветление воды осуществляется путем механического отстаивания с последующей фильтрацией воды от частиц размером более 1 мкм через соответствующие устройства. Для повышения эффекта осветления в отстойниках осуществляют предварительную химическую обработку (коагуляцию с применением в качестве коагулянта сернокислого алюминия), приводящую к укрупнению взвешенных в воде частиц (они слипаются и выпадают в осадок в виде хлопьев). При коагуляции перспективно использовать новые химические вещества, созданные благодаря успехам химии (флоккулянты, в частности, полиакриламид), которые позволяют ускорить эту работу. В осадок выпадает и часть микроорганизмов.


1 — аэрация разбрызгиванием; 2 — хлорирование; 3 — смесительная камера: уголь и алюминиевые или железные квасцы; 4 — конечное хлорирование; 5 — распределение чистой воды по потребителям

После отстаивания и коагуляции вода поступает на фильтрацию (обычно кварцевым песком). Наиболее часто применяется «скорый фильтр»: резервуар, заполненный песком, а под ним слой гравия. Фильтр задерживает более мелкие частицы и часть микроорганизмов. Рассмотренные очистные сооружения водопровода, основной функцией которых является осветление и обесцвечивание воды, способны задержать до 90% находящихся в воде микроорганизмов.


Этот процесс заключается в сорбции бактерий и вирусов на поверхности взвешенных частиц и хлопьев, последующее их осаждение в отстойниках или отфильтровывание, что зависит от параметров взвесей, которые имеют огромный разброс. Не осевшие на взвесях микроорганизмы проникают через все элементы очистных сооружений. Для недопущения передачи через воду кишечных инфекций и их окончательного уничтожения в практике коммунального водоснабжения используют реагентные (хлорирование, озонирование) или безреагентные (ультрафиолетовое, лазерное или гамма-облучение) методы.


Хлорирование воды на современном этапе наиболее распространено из-за простоты процесса, надежности и дешевизны. При правильно выбранной дозе хлорирования и достаточной предварительной очистке вода полностью освобождается от патогенных микробов: это фиксируется наличием свободного хлора, т.е. не требуется проведение анализа очищенной воды. К недостаткам процесса хлорирования относятся сложность транспортировки хлора (высокотоксичное вещество, образующее в воде хлорорганические соединения, вредные для организма, требует строго выполнять меры безопасности и длительного контакта для достижения эффекта очистки воды).


Процесс озонирования (прямого контакта газа с водой) является альтернативным хлорированию. Озон — сильный окислитель, разрушающий микроорганизмы. При озонировании углеводороды не образуются (как это наблюдается при хлорировании), а имеющиеся в воде углеводороды разрушаются озоном путем окисления, происходит обесцвечивание и устранение посторонних привкусов и запахов. Озон улучшает органолептические свойства воды и обеспечивает бактерицидный эффект при менее продолжительном контакте (до 10 мин).


Даже при вводе избыточного количества озона в обработанной воде не остается следов свободного озона, но это не дает полной гарантии уничтожения микроорганизмов: требуется выполнить дополнительный анализ взятых проб (проведение теста на присутствие бактерий требует 24 ч). Если микроорганизмы попадут в воду после обработки озоном, то они не погибают. А это требует использовать дополнительное обеззараживающее средство, т.е. опять хлор. Широкому внедрению озонирования препятствует высокая энергоемкость процесса получения озона.


На качество природных вод оказывают влияние природные и антропогенные факторы. К природным (естественным) факторам относятся условия формирования поверхностного или подземного водного стока, разнообразные природные явления, накопление органических веществ из-за отмирания растительных и животных организмов. К антропогенным факторам — деятельность людей, что приводит к химическому, физическому и (или) биологическому загрязнению воды.

Влияние примесей на состояние водного объекта


Состав примесей


Влияние на водный объект


Механические


Песок, глина, шлак, рудные включения


Обмеление реки, заилива­ние водохранилища, дефи­цит кислорода, замедление развития водных организмов


Минераль­ные, хими­ческие (растворы, коллоиды, взвеси)


Тяжелые металлы, мине­ральные удобрения, био­генные элементы (азот, фосфор, углерод)


Токсические воздействия на водные организмы. Приводят к «цветению» водоемов


Органичес­кие, легко окисляемые (растворы, коллоиды, взвеси)


Органические вещества в сточных водах пищевых и сельскохозяйственных объектов, бытовых отходах


Из-за дефицита кислорода изменяется рН, ухудшают­ся органолептические свойства, бурно развивают­ся сине-зеленые водоросли


Органические, трудно окисляемые (растворы, коллоиды, взвеси)


Нефтепродукты, фенольные соединения, жесткие СПАВ, стойкие пестициды


Из-за высокой стойкости и токсичности придают воде неприятный запах и вкус, ограничивая ее пригодность для питья; трудно удаляют­ся из воды


Биологичес­кие


Бактерии, водоросли, простейшие, черви, яйца гельминтов, грибы


Образуют устойчивые взвеси. Происходит обрастание подводных предметов. Участвуют в самоочищении и вторичном загрязнении водоема


Причиной химических загрязнений водных объектов обычно является сброс неочищенных или недостаточно очищенных промышленных или бытовых сточных вод: органической или неорганической природы, синтетические поверхностно-активные вещества (СПАВ).


Физические загрязнения определяются тепловыми, механическими или радиоактивными примесями. Биологическое загрязнение заключается в изменении свойств водной среды в результате увеличения количества несвойственных ей видов микроорганизмов, поступающих обычно с бытовыми сточными водами (воды кухонь, туалетов, больниц, прачечных).


Сточные воды представляют собой сложные гетерогенные системы загрязняющих веществ, находящихся в растворенном, коллоидном или нерастворенном состоянии.


Сточные воды можно разделить на бытовые, производственные и ливневые (дождевые), отличающиеся друг от друга происхождением, составом и биологической активностью.


Бытовые сточные воды образуются в результате жизнедеятельности людей и характеризуются наличием загрязнителей минерального (соли аммония, фосфаты, хлориды, гидрокарбонаты) и органического (безазотистые и азотосодержащие) происхождения. Минеральные вещества в сточных водах могут быть в нерастворенном виде (5%), в виде суспензии (5%), коллоидах (2%) и растворенном виде (до 30%). Безазотистые органические вещества представляют собой углеводороды и жиры, азотосодержащие — белки и продукты их гидролиза. Содержание органических нерастворенных загрязнителей в сточных водах составляет 15%, в виде суспензии 5%, коллоидов 8% и растворенных 20%. Особой группой загрязнителей являются микроорганизмы.


Состав производственных сточных вод зависит от характера производственного процесса на соответствующем объекте экономики:

  1. сточные воды предприятий металлургии и аналогичных производств (например, гальванических), содержащие неорганические примеси в виде солей тяжелых металлов, способных токсически воздействовать на обитателей водоемов;
  2. сточные воды рудообогатительных и цементных предприятий, ДСК с неорганическими примесями, не обладающими токсичным действием (здесь примеси находятся во взвешенном состоянии);
  3. стоки предприятий химической и нефтехимической промышленности, органического синтеза, содержащие органические вещества, обладающие токсическим действием (ПАВ, фенолы, ацетон, формальдегид, неорганические кислоты, жиры, нефтепродукты, хлориды);
  4. воды, содержащие нетоксичные органические вещества, попадание которых в водоемы приводит к снижению концентрации растворенного кислорода, возрастанию окисляемости, ВПК.

Дождевые сточные воды также характеризуются огромным разнообразием примесей, зависящих от множества факторов (общего санитарного состояния территории ливневого сбора, видов и характеристик промышленности региона, режима таяния снега, характера атмосферных осадков).

Методов улучшения качества воды много, и они позволяют освободить воду от опасных микроорганизмов, взвешенных частиц, гуминовых соединений, от избытка солей, токсических и радиоактивных веществ и дурнопахнущих газов.

Основная цель очистки воды - защита потребителя от патогенных организмов и примесей, которые могут быть опасны для здоровья человека или иметь неприятные свойства (цвет, запах, вкус и т.д.). Методы очистки следует выбирать с учетом качества и характера источника водоснабжения.

Использование подземных межпластовых водоисточников для централизованного водоснабжения имеет целый ряд преимуществ перед использованием поверхностных источников. К важнейшим из них относятся: защищенность воды от внешнего загрязнения, безопасность в эпидемиологическом отношении, постоянство качества и дебита воды. Дебит - это объем воды, поступающий из источника в единицу времени (л/час, м/сутки и т.д.).

Обычно подземные воды не нуждаются в осветлении, обесцвечивании и обеззараживании, Схема водопровода на подземных водах представлена на рисунке.

К числу недостатков использования подземных водоисточников для централизованного водоснабжения относится небольшой дебит воды, а значит применять их можно в местностях со сравнительно небольшой численностью населения (малые и средние города, поселки городского типа и сельские населенные пункты). Более 50 тыс. сельских населенных пунктов имеют централизованное водоснабжение, однако благоустройство сел затруднено в силу рассредоточенности сельских поселений и малой их численности (до 200 человек). Чаще всего здесь используются различные виды колодцев (шахтные, трубчатые).

Место для колодцев выбирают на возвышенности, не менее 20-30 м от возможного источника загрязнения (уборные, выгребные ямы и др.). При рытье колодца желательно дойти до второго водоносного горизонта.

Дно шахты колодца оставляют открытым, а основные стенки укрепляют материалами, обеспечивающими водонепроницаемость, т.е. бетонными кольцами или деревянным срубом без щелей. Стенки колодца должны возвышаться над поверхностью земли не менее чем на 0,8 м. Для устройства глиняного замка, препятствующего попаданию поверхностных вод в колодец, вокруг колодца выкапывают яму глубиной 2 м и шириной 0,7-1 м и наполняют ее хорошо утрамбованной жирной глиной. Поверх глиняного замка делают подсыпку песком, мостят кирпичом или бетоном с уклоном в сторону от колодца для стока поверхностных вод и пролива при ее заборе. Колодец необходимо оборудовать крышкой и пользоваться только общественным ведром. Лучший способ подъема воды - насосы. Кроме шахтных колодцев, для добывания подземных вод применяют разные типы трубчатых колодцев.

: 1 - трубчатый колодец; 2 - насосная станция первого подъема; 3 - резервуар; 4 - насосная станция второго подъема; 5 - водонапорная башня; 6 - водонапорная сеть

.

Преимущество таких колодцев в том, что они могут быть любой глубины, стенки их изготовляются из водонепроницаемых металлических труб, по которым насосом поднимается вода. При расположении меж пластовой воды на глубине больше 6-8 м ее добывают посредством устройства скважин, оборудованных металлическими трубами и насосами, производительность которых достигает 100 мУч и более.

: а - насос; б - слой гравия на дне колодца

Вода открытых водоемов подвержена загрязнениям, поэтому, с эпидемиологической точки зрения, все открытые водоисточники в большей или меньшей степени потенциально опасны. Кроме того, эта вода часто содержит гуминовые соединения, взвешенные вещества из различных химических соединений, поэтому она нуждается в более тщательной очистке и обеззараживании

Схема водопровода на поверхностном водоисточнике приведена на рисунке 1.

Головными сооружениями водопровода, питающегося водой из открытого водоема, являются: сооружения для забора и улучшения качества воды, резервуар для чистой воды, насосное хозяйство и водонапорная башня. От нее отходит водовод и разводящая сеть трубопроводов, изготовленных из стали или имеющих антикоррозийные покрытия.

Итак, первый этап очистки воды открытого водоисточника - это осветление и обесцвечивание. В природе это достигается путем длительного отстаивания. Но естественный отстой протекает медленно и эффективность обесцвечивания при этом невелика. Поэтому на водопроводных станциях часто применяют химическую обработку коагулянтами, ускоряющую осаждение взвешенных частиц. Процесс осветления и обесцвечивания, как правило, завершают фильтрованием воды через слой зернистого материала (например, песок или измельченный антрацит). Применяют два вида фильтрования - медленное и скорое.

Медленное фильтрование воды проводят через специальные фильтры, представляющие собой кирпичный или бетонный резервуар, на дне которого устраивают дренаж из железобетонных плиток или дренажных труб с отверстиями. Через дренаж профильтрованная воды отводится из фильтра. Поверх дренажа загружают поддерживающий слой щебня, гальки и гравия по крупности, постепенно уменьшающейся кверху, что не дает возможности мелким частицам просыпаться в отверстия дренажа. Толщина поддерживающего слоя - 0,7 м. На поддерживающий слой загружают фильтрующий слой (1 м) с диаметром зерен 0,25-0,5 мм. Медленный фильтр хорошо очищает воду только после созревания, которое состоит в следующем: в верхнем слое песка происходят биологические процессы - размножение микроорганизмов, гидробионтов, жгутиковых, затем их гибель, минерализация органических веществ и образование биологической пленки с очень мелкими порами, способными задерживать даже самые мелкие частицы, яйца гельминтов и до 99% бактерий. Скорость фильтрации составляет 0,1-0,3 м/ч.

Рис. 1.

: 1 - водоем; 2 - заборные трубы и береговой колодец; 3 - насосная станция первого подъема; 4 - очистные сооружения; 5 - резервуары чистой воды; 6 - насосная станция второго подъема; 7 - трубопровод; 8 - водонапорная башня; 9 - разводящая сеть; 10 - места потребления воды.

Медленнодействующие фильтры применяют на малых водопроводах для водоснабжения сел и поселков городского типа. Раз в 30-60 дней поверхностный слой загрязненного песка снимают вместе с биологической пленкой.

Стремление ускорить осаждение взвешенных частиц, устранить цветность воды и ускорить процесс фильтрования привело к проведению предварительного коагулирования воды. Для этого к воде добавляют коагулянты, т.е. вещества, образующие гидроокиси с быстро оседающими хлопьями. В качестве коагулянтов применяют сернокислый алюминий - Al2(SO4)3; хлорное железо - FeSl3, сернокислое железо - FeSO4 и др. Хлопья коагулянта обладают огромной активной поверхностью и положительным электрическим зарядом, что позволяет им адсорбировать даже мельчайшую отрицательно заряженную взвесь микроорганизмов и коллоидных гуминовых веществ, которые увлекаются на дно отстойника оседающими хлопьями. Условия эффективности коагуляции - наличие бикарбонатов. На 1 г коагулянта добавляют 0,35 г Са(ОН)2. Размеры отстойников (горизонтальных или вертикальных) рассчитаны на 2-3-часовое отстаивание воды.

После коагуляции и отстаивания вода подается на скорые фильтры с толщиной фильтрующего слоя песка 0,8 м и диаметром песчинок 0,5-1 мм. Скорость фильтрации воды составляет 5-12 м/час. Эффективность очистки воды: от микроорганизмов - на 70-98% и от яиц гельминтов - на 100%. Вода становится прозрачной и бесцветной.

Очистку фильтра проводят путем подачи воды в обратном направлении со скоростью, в 5-6 раз превышающей скорость фильтрования в течение 10-15 мин.

С целью интенсификации работы описанных сооружений используют процесс коагуляции в зернистой загрузке скорых фильтров (контактная коагуляция). Такие сооружения называют контактными осветелителями. Их применение не требует строительства камер хлопьеобразования и отстойников, что позволяет уменьшить объем сооружений в 4-5 раз. Контактный фильтр имеет трехслойную загрузку. Верхний слой - керамзит, полимерная крошка и др. (размер частиц -- 2,3-3,3 мм).

Средний слой - антрацит, керамзит (размер частиц - 1,25-2,3 мм).

Нижний слой - кварцевый песок (размер частиц - 0,8-1,2 мм). Над поверхностью загрузки укрепляют систему перфорированных труб для введения раствора коагулянта. Скорость фильтрации до 20 м/час.

При любой схеме заключительным этапом обработки воды на водопроводе из поверхностного источника должно быть обеззараживание.

При организации централизованного хозяйственно-питьевого водоснабжения небольших населенных пунктов и отдельных объектов (дома отдыха, пансионаты, пионерские лагеря) в случае использования в качестве источника водоснабжения поверхностных водоемов необходимы сооружения небольшой производительности. Этим требованиям отвечают компактные установки заводского изготовления "Струя" производительностью от 25 до 800 м/сутки.

В установке используют трубчатый отстойник и фильтр с зернистой загрузкой. Напорная конструкция всех элементов установки обеспечивает подачу исходной воды насосами первого подъема через отстойник и фильтр непосредственно в водонапорную башню, а затем потребителю. Основное количество загрязнений оседает в трубчатом отстойнике. Песчаный фильтр обеспечивает окончательное извлечение из воды взвешенных и коллоидных примесей.

Хлор для обеззараживания может вводиться либо перед отстойником, либо сразу в фильтрованную воду. Промывку установки проводят 1-2 раза в сутки в течение 5-10 мин обратным потоком воды. Продолжительность обработки воды не превышает 40-60 мин, тогда как на водопроводной станции этот процесс составляет от 3 до 6 ч.

Эффективность очистки и обеззараживания воды на установке "Струя" достигает 99,9%.

Обеззараживание воды может быть проведено химическими и физическими (безреагентными) методами.

К химическим методам обеззараживания воды относят хлорирование и озонирование. Задача обеззараживания - уничтожение патогенных микроорганизмов, т.е. обеспечение эпидемической безопасности воды.

Россия была одной из первых стран, в которой хлорирование воды стало применяться на водопроводах. Произошло это в 1910 г. Однако на первом этапе хлорирование воды проводили только при вспышках водных эпидемий.

В настоящее время хлорирование воды является одним из наиболее широко распространенных профилактических мероприятий, сыгравших огромную роль в предупреждении водных эпидемий. Этому способствует доступность метода, его дешевизна и надежность обеззараживания, а также многовариантность, т.е. возможность обеззараживать воду на водопроводных станциях, передвижных установках, в колодце (при его загрязнении и ненадежности), на полевом стане, в бочке, ведре и во фляге.

Принцип хлорирования основан на обработке воды хлором или химическими соединениями, содержащими хлор в активной форме, обладающей окислительным и бактерицидным действием.

Химизм происходящих процессов состоит в том, что при добавлении хлора к воде происходит его гидролиз:

Т.е. образуются соляная и хлорноватистая кислота. Во всех гипотезах, объясняющих механизм бактерицидного действия хлора, хлорноватистой кислоте отводят центральное место. Небольшие размеры молекулы и электрическая нейтральность позволяют хлорноватистой кислоте быстро пройти через оболочку бактериальной клетки и воздействовать на клеточные ферменты (БН-группы;), важные для обмена веществ и процессов размножения клетки. Это подтверждено при электронной микроскопии: выявлено повреждение оболочки клетки, нарушение ее проницаемости и уменьшение объема клетки.

На крупных водопроводах для хлорирования применяют газообразный хлор, поступающий в стальных баллонах или цистернах в сжиженном виде. Используют, как правило, метод нормального хлорирования, т.е. метод хлорирования по хлорпотребности.

Имеет важное значение выбор дозы, обеспечивающий надежное обеззараживание. При обеззараживании воды хлор не только способствует гибели микроорганизмов, но и взаимодействует с органическими веществами воды и некоторыми солями. Все эти формы связывания хлора объединяются в понятие "хлорпоглощаемость воды".

В соответствии с СанПиН 2.1.4.559-96 "Питьевая вода..." доза хлора должна быть такой, чтобы после обеззараживания в воде содержалось 0,3-0,5 мг/л свободного остаточного хлора. Этот метод, не ухудшая вкуса воды и не являясь вредным для здоровья, свидетельствует о надежности обеззараживания.

Количество активного хлора в миллиграммах, необходимое для обеззараживания 1 л воды, называют хлорпотребностью.

Кроме правильного выбора дозы хлора, необходимым условием эффективного обеззараживания является хорошее перемешивание воды и достаточное время контакта воды с хлором: летом не менее 30 минут, зимой не менее 1 часа.

Модификации хлорирования: двойное хлорирование, хлорирование с аммонизацией, перехлорирование и др.

Двойное хлорирование предусматривает подачу хлора на водопроводные станции дважды: первый раз перед отстойниками, а второй - как обычно, после фильтров. Это улучшает коагуляцию и обесцвечивание воды, подавляет рост микрофлоры в очистных сооружениях, увеличивает надежность обеззараживания.

Хлорирование с аммонизацией предусматривает введение в обеззараживаемую воду раствора аммиака, а через 0,5-2 минуты - хлора. При этом в воде образуются хлорамины - монохлорамины (NH2Cl) и дихлорамины (NHCl2), которые также обладают бактерицидным действием. Этот метод применяется для обеззараживания воды, содержащей фенолы, с целью предупреждения образования хлорфенолов. Даже в ничтожных концентрациях хлорфенолы придают воде аптечный запах и привкус. Хлорамины же, обладая более слабым окислительным потенциалом, не образуют с фенолами хлорфенолов. Скорость обеззараживания воды хлораминами меньше, чем при использовании хлора, поэтому продолжительность дезинфекций воды должна быть не меньше 2 ч, а остаточный хлор равен 0,8-1,2 мг/л.

Перехлорирование предусматривает добавление к воде заведомо больших доз хлора (10-20 мг/л и более). Это позволяет сократить время контакта воды с хлором до 15-20 мин и получить надежное обеззараживание от всех видов микроорганизмов: бактерий, вирусов, риккетсий Бернета, цист, дизентерийной амебы, туберкулеза и даже спор сибирской язвы. По завершении процесса обеззараживания в воде остается большой избыток хлора и возникает необходимость дехлорирования. С этой целью в воду добавляют гипосульфит натрия или фильтруют воду через слой активированного угля.

Перехлорирование применяется преимущественно в экспедициях и военных условиях.

К недостаткам метода хлорирования следует отнести:

А) сложность транспортировки и хранения жидкого хлора и его токсичность;

Б) продолжительное время контакта воды с хлором и сложность подбора дозы при хлорировании нормальными дозами;

В) образование в воде хлорорганических соединений и диоксинов, небезразличных для организма;

Г) изменение органолептических свойств воды.

И, тем не менее, высокая эффективность делает метод хлорирования самым распространенным в практике обеззараживания воды.

В поисках безреагентных методов или реагентов, не изменяющих химического состава воды, обратили внимание на озон. Впервые эксперименты с определением бактерицидных свойств озона были проведены во Франции в 1886 г. Первая в мире производственная озонаторная установка была построена в 1911 г. в Петербурге.

В настоящее время метод озонирования воды является одним из самых перспективных и уже находит применение во многих странах мира - Франции, США т.д. У нас озонируют воду в Москве, Ярославле, Челябинске, на Украине (Киев, Днепропетровск, Запорожье и др.).

Озон (О3) - газ бледно-фиолетового цвета с характерным запахом. Молекула озона легко отщепляет атом кислорода. При разложении озона в воде в качестве промежуточных продуктов образуются короткоживущие свободные радикалы НО2 и ОН. Атомарный кислород и свободные радикалы, являясь сильными окислителями, обусловливают бактерицидные свойства озона.

Наряду с бактерицидным действием озона в процессе обработки воды происходит обесцвечивание и устранение привкусов и запахов.

Озон получают непосредственно на водопроводных станциях путем тихого электрического разряда в воздухе. Установка для озонирования воды объединяет блоки кондиционирования воздуха, получения озона и смешения его с обеззараживаемой водой. Косвенным показателем эффективности озонирования является остаточный озон на уровне 0,1-0,3 мг/л после камеры смешения.

Преимущества озона перед хлором при обеззараживании воды состоит в том, что озон не образует в воде токсических соединений (хлорорганических соединений, диоксинов, хлорфенолов и др.), улучшает органолептические показатели воды и обеспечивает бактерицидный эффект при меньшем времени контакта (до 10 мин). Он более эффективен по отношению к патогенным простейшим - дизентерийной амебе, лямблиям и др.

Широкое внедрение озонирования в практику обеззараживания воды сдерживается высокой энергоемкостью процесса получения озона и несовершенством аппаратуры.

Олигодинамическое действие серебра в течение длительного времени рассматривалось как средство для обеззараживания преимущественно индивидуальных запасов воды. Серебро обладает выраженным бактериостатическим действием. Даже при введении в воду незначительного количества ионов микроорганизмы прекращают размножение, хотя остаются живыми и даже способными вызвать заболевание. Концентрации серебра, способные вызвать гибель большинства микроорганизмов, при длительном употреблении воды токсичны для человека. Поэтому серебро в основном применяется для консервирования воды при длительном хранении ее в плавании, космонавтике и т.д.

Для обеззараживания индивидуальных запасов воды применяются таблетированные формы, содержащие хлор.

Аквасепт - таблетки, содержащие 4 мг активного хлора мононатриевой соли дихлори-зоциануровой кислоты. Растворяется в воде в течение 2-3 мин, подкисляет воду и тем самым улучшает процесс обеззараживания.

Пантоцид - препарат из группы органических хлораминов, растворимость - 15-30 мин., выделяет 3 мг активного хлора.

К физическим методам относятся кипячение, облучение ультрафиолетовыми лучами, воздействие ультразвуковыми волнами, токами высокой частоты, гамма-лучами и др.

Преимущество физических методов обеззараживания перед химическими состоит в том, что они не изменяют химического состава воды, не ухудшают ее органолептических свойств. Но из-за их высокой стоимости и необходимости тщательной предварительной подготовки воды в водопроводных конструкциях применяется только ультрафиолетовое облучение, а при местном водоснабжении - кипячение.

Ультрафиолетовые лучи обладают бактерицидным действием. Это было установлено еще в конце прошлого века А.Н. Маклановым. Максимально эффективен участок УФ-части оптического спектра в диапазоне волн от 200 до 275 нм. Максимум бактерицидного действия приходится на лучи с длиной волны 260 нм. Механизм бактерицидного действия УФ-облучения в настоящее время объясняют разрывом связей в энзимных системах бактериальной клетки, вызывающим нарушение микроструктуры и метаболизма клетки, приводящим к ее гибели. Динамика отмирания микрофлоры зависит от дозы и исходного содержания микроорганизмов. На эффективность обеззараживания оказывают влияние степень мутности, цветности воды и ее солевой состав. Необходимой предпосылкой для надежного обеззараживания воды УФ-лучами является ее предварительное осветление и обесцвечивание.

Преимущества ультрафиолетового облучения в том, что УФ-лучи не изменяют органолептических свойств воды и обладают более широким спектром антимикробного действия: уничтожают вирусы, споры бацилл и яйца гельминтов.

Ультразвук применяют для обеззараживания бытовых сточных вод, т.к. он эффективен в отношении всех видов микроорганизмов, в том числе и спор бацилл. Его эффективность не зависит от мутности и его применение не приводит к пенообразованию, которое часто имеет место при обеззараживании бытовых стоков.

Гамма-излучение очень эффективный метод. Эффект мгновенный. Уничтожение всех видов микроорганизмов, однако в практике водопроводов пока не находит применения.

Кипячение является простым и надежным методом. Вегетативные микроорганизмы погибают при нагревании до 80°С уже через 20-40 с, поэтому в момент закипания вода уже фактически обеззаражена. А при 3-5-минутном кипячении есть полная гарантия безопасности, даже при сильном загрязнении. При кипячении разрушается ботулинический токсин и при 30-минутном кипячении погибают споры бацилл.

Тару, в которой хранится кипяченая вода, необходимо мыть ежедневно и ежедневно менять воду, так как в кипяченой воде происходит интенсивное размножение микроорганизмов.

По результатам домашней проверки, качество Вашей водопроводной воды можно улучшить.

Питьевая вода, подающаяся в городскую квартиру, уже прошла стадию очистки и обеззараживания на станции водоподготовки.

В водопроводной воде могут присутствовать примеси и загрязнения, которые либо не удаляются на водопроводных очистных сооружениях полностью, либо появляются в воде уже на пути к потребителю.

Многие вещества, загрязняющие воду, способствуют образованию мутных взвесей, вызывают неприятный запах, характерный привкус, а также могут окрашивать воду в тот или иной цвет.

Однако, наличие некоторых примесей может никак не отразиться на внешнем виде водопроводной воды.

Простые способы, которые помогут сделать водопроводную воду чище и безопаснее .

  • Прежде чем использовать водопроводную воду, слейте ее в течение нескольких минут, т. к. в трубах она быстро застаивается.
  • Дайте воде отстояться в открытом сосуде, чтобы улетучился остаточный хлор.
  • Затем профильтруйте воду через любой фильтр. Даже простейшие накопительного типа, лучше, чем ничего. Фильтрование позволит удалить из воды взвесь и часть микроорганизмов.

Вы обнаружили в воде мутность.

Мутная вода - это результат присутствия в воде взвешенных и коллоидных примесей, либо повышенное содержание воздуха в воде.

Взвешенные и коллоидные частицы - это очень мелкие частицы: соединения алюминия и железа, кремния, продукты жизнедеятельности и распада растений и животных.

Для очистки воды от этих загрязняющих компонентов рекомендуется использовать комбинацию механических фильтров (с инертной загрузкой) и угольных фильтров с загрузкой из активированного угля.

Вы обнаружили в воде цвет.

Цветность может быть обусловлена растворёнными и взвешенными частицами минерального и органического происхождения.

Желтый оттенок воды – присутствие гумусовых веществ (гуминовых и фульвокислот), или повышенное содержание железа.

Серый оттенок воды - повышенное содержание марганца, железа

Красновато-бурый осадок - присутствие в воде окисленного железа.

Для очистки воды от этих загрязняющих компонентов рекомендуется использовать предварительную очистку на механическом фильтре и далее - фильтр с угольной загрузкой или систему на основе обратного осмоса.

Вы обнаружили в воде запах .

Запах рыбный или затхлый - присутствие в воде хлорорганических соединений.

Запах сероводорода (запах тухлых яиц) - попадание сточных вод в систему водоснабжения или жизнедеятельность бактерий, образующих сероводород из сульфатов.

Хлорный запах - повышенное содержание в воде остаточного хлора.

Запах нефтепродуктов - попадание нефтепродуктов в систему водоснабжения.

Химический запах, запах фенола - загрязнение воды промышленными стоками, в частности, стоками предприятий органической химии.

Для очистки воды от этих загрязняющих компонентов рекомендуется использовать фильтр с угольной загрузкой или систему на основе обратного осмоса.

Вы обнаружили в воде привкус .

Привкус солоноватый - высокое содержание солей натрия и магния

Для очистки воды от этих загрязняющих компонентов рекомендуется использовать систему на основе обратного осмоса.

Привкус металлический - повышенное содержание железа.

Привкус, обусловленный органическими загрязнениями.

Щелочной привкус – высокая щелочность воды, повышенная жесткость, высокое содержание растворённых веществ.

Вы обнаружили накипь в чайнике.

Накипь свидетельствует о наличии в воде излишков солей кальция и магния.

Нитраты в воде

Источник нитратов в воде – удобрения и сточные воды, попадающие в поверхностные и подземные водоёмы. Высокое содержание нитратов в воде опасно для человека и, особенно, для детей. Известно, что в организме часть нитратов превращается в более токсичное вещество – нитриты.

Следует отметить, что универсального фильтра, который чистит от всего: от хлора, от железа, от органики, от металлов, от бактерий и …не существует.

Для каждого вида загрязнений используется определенный тип фильтра. Поэтому, оптимальная очистная установка должна состоять из правильно подобранного набора узлов, каждый из которых удаляет определённый вид загрязнений.

В любом случае, системы очистных установок, состоящие из нескольких последовательно работающих фильтров с различной загрузкой, обеспечивают более качественную очистку воды, чем фильтр с однотипной загрузкой.

Для очистки питьевой воды, как правило, используется набор фильтров с различными загрузками либо мембранами, соответствующими типу загрязнений, которые необходимо удалить из воды. Часто система очистки включает в себя обеззараживание воды.

Ниже приведены основные компоненты установок для очистки питьевой воды, чтобы помочь Вам выбрать подходящую конструкцию.

Механические фильтры удаляют из воды взвешенные вещества.

В качестве загрузки используются пористые материалы (чаще всего керамические).

Угольные фильтры изготавливают на основе активированного угля, который является хорошим адсорбентом.

Угольный фильтр очищает воду от остаточного хлора, растворенных газов, органических соединений, включая токсины, запаха и улучшает вкусовые качества воды.

Фильтры для обезжелезивания удаляют железо и марганец. Для их изготовления используют специальные полимеры, ускоряющие окисления металла. Полученный, в результате реакции, осадок задерживается фильтрующей системой.

Фильтры с ионообменной загрузкой. В зависимости от типа ионообменной загрузки, эти фильтры удаляют различные ионы из воды, в том числе, эффективны для снижения жёсткости и удаления нитратов из воды.

Установки для очистки воды на основе обратного осмоса

Система обратного осмоса включает специальную мембрану, через которую пропускается питьевая вода. Мембраны задерживают 95 - 99,5% всех примесей.

Необходимо помнить, что из воды удаляется и большинство полезных веществ, необходимых для жизнедеятельности организма. Такая вода нарушает работу организма. Прежде всего, это относится к крепости костей, которая зависит от количества кальция в крови.

Недостаток в воде микроэлементов, отражается на работе печени, почек, нервной и иммунной систем. Поэтому, в очищенную обратным осмосом воду, следует добавлять необходимые организму соли и микроэлементы.

Установки для обеззараживания воды на основе ультрафиолетового излучения.

Ультрафиолетовое излучение инактивирует болезнетворные микроорганизмы. Эти установки обязательны в загородных домах и в сельской местности. В городских квартирах такие системы используют, в случае неэффективного обеззараживания водопроводной воды на центральных очистных сооружения.

Технические требования и правила эксплуатации установки для очистки питьевой воды .

  • система должна обеспечивать эффективную очистку воды.
  • для изготовления компонентов установки (корпус, трубы, загрузка…) должны использоваться нетоксичные материалы.
  • извлеченные из воды, в процессе очистки, примеси не должны повторно загрязнять очищенную воду.
  • обязательна своевременная промывка и замена фильтрующих элементов и бактерицидных ламп.

Обратите внимание, что оптимальный выбор системы очистки (тип фильтров, загрузки, способ обеззараживания и прочее) может быть произведен только на основе результатов лабораторного химического анализа Вашей питьевой воды.

Какие показатели желательно проверить в вашей воде :

Водородный показатель (pH), общая минерализация, органические вещества (окисляемость перманганатная, либо общий органический углерод), нефтепродукты, нитраты, нитриты, цианиды, фториды, жёсткость, тяжёлые металлы, общие колиформные бактерии, цисты лямблий, пестициды, галогенорганические соединения.

Кроме того, после выбора и установки системы очистки, отдайте пробы очищенной воды в лабораторию на химический анализ, чтобы убедиться в эффективности очистки.

Если эта статья на нашем сайте , была для вас полезна, то предлагаем вам книгу с Рецептами живого, оздоравливающего питания. Веганские и сыроедческие рецепты . А так же предлагаем вам подборку самых лучших материалов нашего сайта по мнению наших читателей. Подборку - ТОП лучших статей об здоровом образе жизнии здоровом питании вы можете найти там, где вам максимально удобно

Гигиена как раздел медицины, изучающий связь и взаимодействие организма с окружающей средой, тесно соотносится со всеми дисциплинами, обеспечивающими формирование гигиенического мировоззрения врача: биологией, физиологией, микробиологией, клиническими дисциплинами. Это дает возможность широкого использования методов и данных этих наук в гигиенических исследованиях с целью изучения влияния факторов окружающей среды на организм человека и разработке комплекса профилактических мероприятий. Гигиеническая характеристика факторов среды и данные об их влиянии на здоровье в свою очередь способствуют более обоснованной диагностике заболеваний, патогенетическому лечению.

Лекция 16. Методы улучшения качества воды

1. Методы, применяемые для улучшения качества воды. Очистка

Чтобы качество воды соответствовало гигиеническим требованиям, применяют предварительную обработку. Улучшение свойств воды при централизованном водоснабжении достигают на водопроводных станциях. Для улучшения качества воды применяют следующее:

Очистка – удаление взвешенных частиц;

Обеззараживание – уничтожение микроорганизмов;

Специальные методы улучшения органолептических свойств – умягчение, удаление химических веществ, фторирование и др.

Очистка осуществляется механическим (отстаивание), физическим (фильтрование) и химическим (коагуляция) методами.

Отстаивание, при котором происходит осветление и частичное обесцвечивание воды, осуществляется в специальных сооружениях – отстойниках. Принцип их действия состоит в том, что при поступлении через узкое отверстие и замедленном продвижении воды в отстойнике основная масса взвешенных частиц оседает на дно. Однако мельчайшие частицы и микроорганизмы не успевают осесть.

Фильтрация – пропускание воды через мелкопористый материал, чаще всего через песок с определенным размером частиц. Фильтруясь, вода освобождается от взвешенных частиц.

Коагуляция – химический метод очистки. К воде добавляют коагулянт, реагирующий с находящимися в воде бикарбонатами. В этой реакции образуются крупные, тяжелые хлопья, несущие положительный заряд. Оседая под собственной тяжестью, они увлекают за собой находящиеся во взвешенном состоянии частицы загрязнений, заряженные отрицательно.

В качестве коагулянта применяется сульфат алюминия. Для улучшения коагуляции используются высокомолекулярные флокулянты: щелочной крахмал, активизированная кремниевая кислота и другие синтетические препараты.

2. Обеззараживание. Специальные методы улучшения органолептических свойств

Обеззараживанием уничтожаются микроорганизмы на завершающем этапе обработки воды. Для этого применяют химические и физические методы.

Химические (реагентные) методы обеззараживания основаны на добавлении к воде различных химических веществ, вызывающих гибель микроорганизмов. В качестве реагентов могут быть использованы различные сильные окислители: хлор и его соединения, озон, йод, перманганат калия, некоторые соли тяжелых металлов, серебро.

Химические способы обеззараживания имеют ряд недостатков, которые заключаются в том, что большинство реагентов отрицательно влияют на состав и органолептические свойства воды.

Безреагентные или физические методы не оказывают влияния на состав и свойства обеззараживаемой воды, не ухудшают ее органолептических свойств. Они действуют непосредственно на структуру микроорганизмов, вследствие чего обладают более широким диапазоном бактерицидного действия.

Наиболее разработанным и изученным в техническом отношении методом является облучение воды бактерицидными (ультрафиолетовыми) лампами. Источниками излучения служат аргонно-ртутные лампы низкого давления (БУВ) и ртутно-кварцевые (ПРК и РКС).

Из всех физических методов обеззараживание воды наиболее надежным является кипячение, но не находит широкого применения.

К физическим методам обеззараживания относится использование импульсного электрического разряда, ультразвука и ионизирующего излучения.

Практического применения также не находят.

Дезодорация – удаление посторонних запахов и привкусов. С этой целью применяются такие методы, как озонирование, углевание, хлорирование, обработка перманганатом калия, перекисью водорода, фторирование через фильтры, аэрация.

Умягчение воды – удаление из нее катионов кальция и магния. Производится специальными реагентами или при помощи ионообменного и термического методов.

Опреснение воды достигается дистилляцией в опреснителях, а также электрохимическим способом и вымораживанием.

Обезжелезивание производится аэрацией с последующим отстаиванием, коагулированием, известкованием, катионированием, фильтрованием через песчаные фильтры.

Эффективным методом обеззараживания воды в колодце является использование дозирующих хлоросодержащих патронов, которые подвешивают ниже уровня воды.

3. Зоны санитарной охраны водоисточников

Санитарным законодательством предусматривается организация двух зон санитарной охраны водоисточников.

Зона строгого режима включает территорию, на которой располагается место забора, водоподъемные устройства, головные сооружения станции и водопроводящий канал. Эта территория огораживается и строго охраняется.

Зона ограничения включает территорию, предназначенную для охраны от загрязнения источников водоснабжения (источник водоснабжения и бассейн его питания).

КАФЕДРА ОБЩЕЙ ГИГИЕНЫ

ВЛАДИКАВКАЗ 2011

Составители:

Ø ассистент Ф.К. Худалова,

Ø ассистент А.Р. Наниева.

Рецензенты:

Утверждено ЦКУМС ГБОУ ВПО СОГМА Минздравсоцразвития РФ

«____» _________________2011г., протокол №

Цель занятия: изучить методы очистки и обеззараживания воды, научиться проводить пробную коагуляцию и пробное хлорирование воды.

Студент должен знать:

Методы улучшения качества воды (проведения пробного хлорирования, обеззараживания воды с применением различных способов хлорирования);

Студент должен уметь:

Оценить целесообразность и эффективность методов по улучшению качества воды;

Использовать основные нормативные документы и информационные источники справочного характера для разработки гигиенических рекомендаций по применению схемы очистки воды, предназначенной для хозяйственно-питьевого пользования, и необходимых методов обработки воды с учетом качества воды источника, его санитарного состояния и территории вокруг него.

Основная литература:

Ø Румянцев Г.И. Гигиена XXI век, М., 2008.

Ø Пивоваров Ю.П., Королик В.В., Зиневич Л.С. гигиена и основы экологии человека. М., 2004.

Ø Лакшин А.М., Катаева В.А. Общая гигиена с основами экологии человека: Учебник. – М.: Медицина, 2004 (Учеб.лит. для студентов мед.вузов).

Ø Авчинников А.В. Гигиеническая оценка современных способов обеззараживания питьевой воды// Гигиена и санитария. - 2001.-.С. 11-20.

Ø Красовский Г.Н., Егорова Н.А. Хлорирование воды как фактор повышенной опасности для здоровья населения// гигиена и санитария – 2003. - №1.

Дополнительная литература:

Ø Пивоваров Ю.П. Руководство к лабораторным занятиям и основами экологии человека, 2004 г.

Ø Катаева В.А., Лакшин А.М. Руководство к практическим и самостоятельным занятиям по общей гигиене и основам экологии человека. М.: Медицина, 2005

Ø СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества»


Качество питьевой воды служит основой эпидемиологической безопасности и здоровья населения. Доброкачественная по химическим, микробиологическим, органолептическим и эстетическим свойствам вода является показателем высокого санитарного благополучия и жизненного уровня населения. Учитывая огромное значение качества и количества подаваемой питьевой воды для здоровья населения и условий его проживания, обеспечения нормального функционирования детских, лечебно-профилактических, культурных, спортивных и других учреждений, коммунального хозяйства, промышленных предприятий и других объектов представляется важным внедрение прогрессивных мероприятий в сфере питьевого водоснабжения.

Основная цель методов улучшения качества питьевой воды - защита потребителя от патогенных организмов и примесей, которые могут быть опасны для здоровья человека или иметь неприятные свойства (цвет, запах, вкус и т. д.). Методы очистки следует выбирать с учетом качества и характера источника водоснабжения.

Основные способы улучшения качества воды

Основными способами улучшения качества воды поверхностных водоисточников являются осветление, обесцвечивание и обеззараживание.

Осветление воды - это удаление из нее взвешенных веществ.

Обесцвечивание - устранение окрашенных коллоидов.

Обеззараживание - обезвреживание содержащихся в воде источника патогенных бактерий и вирусов.

Для осветления и обесцвечивания применяют следующие способы:

Ø естественное отстаивание и фильтрация на медленных фильтрах;

Ø коагуляция, отстаивание и фильтрация на быстрых фильтрах;

Ø коагуляция и фильтрация в контактных осветлителях.

Методы очистки воды

Основная задача очистки воды - полностью освободить ее от взвеси (мутности), сделать прозрачной (осветлить) и снизить цветность до незаметного уровня.В современных условиях большое значение имеет предварительное удаление из воды зоопланктона (мельчайших животных организмов) и фитопланктона (мельчайших растительных организмов). Для этого используют микрофильтры и барабанные сетки, через которые производится процеживание воды.

Для осветления и обесцвечивания в комплекс сооружений по очистке воды входят: отстойники, смесители, камеры реакции, фильтры и т.д.

Отстойники (горизонтальные, вертикальные) - сооружения, предназначенные для осаждения под силой тяжести в основном крупных по размеру и массе частиц, находящихся в воде во взвешенном состоянии.

Схема горизонтального отстойника

Недостатком естественного осаждения взвеси в отстойниках является длительность этого процесса, при котором не обеспечивается осаждение основной части мелкой взвеси и всех коллоидных частиц. С целью ускорения и повышения эффективности выпадения взвешенных веществ и удаления коллоидных веществ в отстойниках перед отстаиванием производится коагуляция воды.

Схема вертикального отстойника:

1 - подача воды;

2 - отвод воды;

3 - сброс осадка;

4 - камера хлопьеобразования;

5 - кольцевой сборный лоток;

6 - отражательный конус.

Коагуляцией называется процесс укрупнения, агрегации коллоидных и тонко диспергированных примесей воды, происходящий вследствие взаимного слипания под действием сил молекулярного притяжения. Процесс коагуляции завершается образованием видимых невооруженным глазом агрегатов - хлопьев.

Коагуляция происходит под влиянием химических реагентов - коагулянтов, к которым относятся соли алюминия (алюминия сульфат A1 2 (SO 4) 3 ,) и железа (железа сульфат, железа хлорид). Для ускорения процесса коагуляции применяют вещества флоккулянты.

Фильтрация - это следующий после коагуляции и отстаивания процесс для освобождения воды от взвешенных веществ, оставшихся после первых этапов очистки. Сущность фильтрации заключается в пропуске воды через мелкопористый материал, на поверхности, в верхнем слое или в толще которого задерживаются взвешенные частицы.

Фильтр представляет собой железобетонный резервуар, заполненный фильтрующим материалом обычно в два слоя. В качестве фильтрующего материала используют кварцевый песок, антрацитовую крошку, керамзит (дробленый и недробленый), некоторые вулканические шлаки, пенополистирол и другие.

Существует два метода фильтрации воды.

1. Пленочная фильтрация предполагает образование биологической пленки из ранее задержанных примесей в верхнем слое фильтрующей загрузки. В начале, вследствие механического осаждения частиц взвеси и их прилипания к поверхности загрузочного материала (например песка), уменьшается размер пор. Затем на поверхности песка развиваются водоросли, бактерии и другие живые организмы, дающие начало илистому, состоящему из минеральных и органических веществ осадку (биологическая пленка). Пленка достигает толщины 0,5-1 мм и более. Она играет решающую роль в работе медленных фильтров, задерживает мельчайшие взвеси, 95-99 % бактерий, обеспечивает снижение на 20-45 % окисляемости и на 20 % цветности.

2. Объемная фильтрация осуществляется на скорых фильтрах и представляет собой физико-химический процесс, при котором механические примеси воды проникают в толщу фильтрующей загрузки и адсорбируются на поверхности ее частиц и хлопьев коагулянта. В результате уменьшения размеров пор возрастает сопротивление загрузки при фильтровании и потеря напора. В процессе объемной фильтрации задерживается около 95 % бактерий. Скорые фильтры, пропуская большее количество воды, быстро засоряются и чаще требуют очистки.

Двухслойный фильтр

Для очистки вод с незначительной мутностью и высоким содержанием органических соединений, которые плохо поддаются обработке в отстойниках и осветлителях, эффективным методом очистки является флотация.

Флотация - это процесс, сущность которого заключается в том, что коллоидные и дисперсные примеси соединяются с пузырьками воздуха, тонко диспергированного в воде. Комплексы, которые образуются при этом, всплывают и образуют пену на поверхности флотационного устройства. Снижение поверхностного натяжения на границе вода-воздух приводит к повышению эффективности очистки воды методом флотации. Для этого в воду добавляют поверхностно-активные вещества (флотореагенты).

В случае организации централизованной подачи питьевой воды в небольшие объекты (поселки, пансионаты, дома отдыха и т.д.) при использовании в качестве источника водоснабжения поверхностных водоемов для очистки воды могут применяться компактные сооружения небольшой производительности. В их состав входят: трубчатый отстойник, фильтр с зернистой загрузкой, оборудование для приготовления и дозирования реагентов и бак для промывной воды.

На современных станциях очистки воды в случае использования реагентных технологических схем ввод химических реагентов в обрабатываемую воду осуществляется системами автоматического дозирования. Они включают емкости реагентов, дозирующие насосы с микропроцессорными регуляторами и впрыскивающие клапаны.

Дозирующий насос химических реагентов с микропроцессорным регулятором и впрыскивающим клапаном

Методы обеззараживание воды

Обеззараживание (дезинфекция) питьевой воды осуществляется с целью обеспечения эпидемической безопасности питьевой и предотвращения передачи через воду возбудителей инфекционных заболеваний. Обеззараживание направлено на уничтожение патогенных и условно-патогенных микроорганизмов. В целях обеззараживания применяют реагентные (химические) и безреагентные (физические) методы.

Реагентные методы основаны на использовании сильных окислителей (хлора, хлорсодержащих веществ, озона), ионов серебра и других веществ.

К безреагентным методам относятся: ультрафиолетовое облучение, воздействие ультразвука, вакуума, радиоактивное излучение то есть физические методы, а также термическая обработка. На водопроводах обычно обеззараживание воды осуществляется на последнем этапе ее очистки перед поступлением в резервуары чистой воды и разводящую водопроводную сеть. Выбор конкретного метода обеззараживания зависит от качества и количества исходной воды, методов ее предварительной очистки, условий поставки реагентов и других факторов.

Хлорирование - обработка питьевой воды водным раствором хлора с целью ее обеззараживания. Этот метод стал наиболее широко распространен среди всех методов обеззараживания воды. Это связано с относительной дешевизной хлора, несложностью используемого оборудования и надежностью обеззараживающего действия.

При обычных температуре и давлении хлор - газ желто-зеленого цвета с резким специфическим запахом. Раздражает слизистые оболочки, глаза, относится к сильнодействующим ядовитым веществам (СДЯВ) и при выбросе в воздух способен вызвать отравления людей.

Хлор можно использовать для обеззараживания воды на различных сооружениях - от шахтного колодца до крупного водопровода. В целях обеззараживания воды могут применяться газообразный хлор (доставляется в баллонах в жидком состоянии), хлорная известь, гипохлорит кальция, хлорамины, двуокись хлора и другие хлорсодержащие вещества.

Основными условиями действия хлора являются: тщательное освобождение воды от взвешенных веществ, достаточная доза хлора, полное и быстрое перемешивание хлора со всем объемом обеззараживаемой воды и контакт хлора с водой не менее 30-60 мин времени, необходимого для проявления бактерицидного действия. Для обеспечения надежного обеззараживания необходимо ввести его такое количество, чтобы покрыть всю хлорпоглощаемость воды и получить некоторый избыток свободного активного хлора. Об успешности хлорирования воды судят по остаточному активному хлору. Установлено, что дозы хлора в воде 1-3 мг/л обычно обеспечивают достаточный бактерицидный эффект. При этом содержание остаточного свободного хлора в воде после резервуаров чистой воды должно быть в пределах 0,3-0,5 мг/л. Такое хлорирование называется обычным, или хлорированием с учетом хлорпотребности.

Хлорпоглощаемость воды - количество хлора, которое при хлорировании 1 л воды расходуется на окисление органических, легкоокисляющихся неорганических веществ и обеззараживание бактерий в течение 30 минут.

Хлорпотребностъ воды - общее количество хлора, необходимое для удовлетворения хлорпоглощаемости воды и обеспечения наличия необходимого количества остаточного хлора.

Виды хлорирования

Разновидностью хлорирования на водопроводах являются двойное хлорирование и суперхлорирование (перехлорирование).

При двойном хлорировании хлор вводится в воду дважды: первый раз в смеситель перед отстойниками и второй - после фильтров, применяется, например, в случае использования для питьевого водоснабжения речной воды с высокой бактериальной загрязненностью.

Суперхлорирование - хлорирование воды избыточными дозами хлора (5-20 мг/л) при остаточном содержании активно: до 1-5 мг/л. Применяется временно при резких колебаниях бактериальной загрязненности воды, в случае особой эпидемической обстановки и при невозможности обеспечить достаточный контакт воды с хлором.

При наличии высокого содержания остаточного хлора вода считается непригодной непосредственно для употребления и требует последующего дехлорирования ее химическим веществами (гипосульфит или сернистый газ) или сорбционным методом (активированный уголь).

Одним из способов обеззараживания воды является аммонизация (хлорирование с преаммонизацией), при которой в воду последовательно вводят сначала аммиак, а затем хлор. Хлорирование с преаммонизациеи используют с целью предотвращения появления специфических запахов в случае хлорирования воды, содержащей фенол или бензол, а также для пресечения образования канцерогенных веществ (хлороформ и др.) во время хлорирования воды при наличии в ней гуминовых и других веществ.

Несмотря на положительные стороны применения хлора для обеззараживания питьевой воды, в последние годы выявлены и отрицательные последствия хлорирования воды для здоровья населения.

В результате реакции хлора с находящимися в воде гуминовыми соединениями, продуктами жизнедеятельности некоторых организмов и веществами техногенного происхождения в воде могут образовываться высокотоксичные, канцерогенные и мутагенные вещества. К ним относятся: тригалометаны (ТГМ), в том числе хлороформ, бромоформ, дибромхлорметан и другие.

Необходимо учитывать, что некоторые из образующихся в воде вредных веществ поступают в организм не только в процессе употребления воды и пищевых продуктов (энтерально), но и через неповрежденную кожу во время принятия душа, ванны, плавания в бассейне. Поэтому важным направлением в решении назревшей проблемы является применение других, альтернативных хлорированию, способов обеззараживания питьевой воды.

Озонирование - обработка воды озоном для уничтожения микроорганизмов и устранения неприятных запахов.

Озон (O 3) - газ голубоватого цвета со специфическим запахом, очень хорошо растворим в воде. Обладает высокой окислительной способностью, которая обуславливает его бактерицидность. Действует на протоплазму микроорганизмов, уничтожает вирусы (в частности, полиомиелита).

Озонатор – аппарат (генератор) для получения озона, используемого с целью обеззараживания воды

Озонирование по сравнению с хлорированием имеет следующие основные преимущества:

Ø надежное обеззараживание достигается в течение нескольких минут, при этом озон эффективнее хлора обеззараживает воду от споровых форм бактерий и возбудителей вирусных инфекций;

Ø озон, а также продукты его соединения с веществами, находящимися в воде, не имеют вкуса и запаха;

Ø происходит обесцвечивание воды и устранение ранее имевшихся запахов различного происхождения;

Ø избыточный озон через несколько минут превращается в кислород, выделяющийся в атмосферный воздух, и поэтому не оказывает влияния на организм человека;

Ø при этом значительно меньше, чем при хлорировании образуется новых токсических веществ;

Ø процесс озонирования в меньшей степени, чем хлорирование зависит от рН, мутности, температуры и других свойств воды;

Ø производство озона на месте избавляет от необходимости доставки и хранения реагентов.

Недостатки озонирования. Озон является взрывоопасным и токсичным реагентом, это более дорогой способ по сравнению с хлорированием. Быстрое разложение в отработанной воде (за 20-30 минут) ограничивает его применение, после озонирования нередко наблюдается значительный рост микрофлоры вследствие реактивации бактерий и вторичного загрязнения. Даже высокие дозы озона (20 мг/л) и длительная экспозиция (1,5-2 часа) не обеспечивают полностью эффективное обеззараживание в отношении бактериальных спор. При обработке воды озоном могут образовываться побочные токсичные продукты: броматы, альдегиды, кетоны, карбоновые кислоты и др. соединения. Эти продукты могут вызывать мутагенный и другие неблагоприятные эффекты.

Обеззараживание воды ионами серебра основано на олигодинамическом действии этого металла. Серебро обладает свойством консервировать воду на длительное время. Согласно опубликованным данным, вода, обработанная серебром в концентрации 0,1 мг/л, сохраняет высокие санитарно-гигиенические показатели в течение года и более.

Обеззараживание серебром осуществляется непосредственно путем обеспечения контакта воды с поверхностью металла или в результате растворения солей серебра в воде электролитическим способом. Во втором случае используются ионаторы, обеспечивающие растворение серебра под действием постоянного электрического тока.

Ионаторы используют для обеззараживания воды на крупных судах. Высокую оценку воде, обработанной серебром, дали космонавты. Практика показала, что обработка бортовых запасов питьевой воды серебром обеспечивает сохранность ее органолептических и гигиенических свойств в условиях космических полетов различной продолжительности. Серебро оказалось также прекрасным консервантом минеральной воды. Поэтому на престижных предприятиях по производству безалкогольных напитков минеральную воду обеззараживают серебром.

Однако несмотря на богатую информацию об антимикробных свойствах серебра, широкое его внедрение в практику водоснабжения сдерживалось по различным причинам, в том числе недостаточными сведениями о его токсичности.

Ультрафиолетовое облучение. Бактерицидное действие ультрафиолетовых (УФ) лучей, широко известно и неоднократно доказано в экспериментах. УФ лучи проникают через 25 см слой прозрачной и бесцветной воды. Под воздействием УФ излучения в клетках находящихся в воде микроорганизмов происходят необратимые процессы, вызывающие нарушение молекулярных и межмолекулярных связей. Это приводит к денатурации (разрушению) белков клеток протоплазмы, в частности, к повреждению ДНК, РНК, клеточных мембран, и как следствие, к гибели микроорганизмов. Образующиеся под воздействием УФ излучения короткоживущие молекулы озона, атомарный кислород, свободные радикалы и гидроксильные группы дополнительно воздействуют на находящиеся в воде микроорганизмы.

Метод УФ обеззараживания не изменяет химического состава и органолептических качеств воды. Достоинством метода является также быстрота обеззараживания (несколько секунд) и отсутствие запаха и привкуса при использовании ультрафиолетовых лучей. Лучи пагубно воздействуют не только на вегетативные формы патогенных бактерий, которые погибают после облучения в течение 1-2 мин, но также на устойчивые к хлору споры, вирусы и яйца гельминтов. Многочисленные исследования показали отсутствие вредных эффектов даже при дозах УФ облучения, намного и превышающих практически необходимые. Следовательно, в отличие от технологии хлорирования и озонирования, принципиально отсутствует опасность передозировки УФ облучения. В то же время имеются сведения о том, что если доза УФ излучения выбрана правильно, активация микроорганизмов не наблюдается, что позволяет применять УФ обеззараживание без последующего ввода консервирующих доз хлора.

Технология обеззараживания воды УФ облучением является наиболее простой в реализации и обслуживании. Для обеззараживания воды УФ облучением характерны незначительные затраты электроэнергии (в 3-5 ниже, чем при озонировании) и отсутствие потребности в дорогостоящих реактивах.

Для обеззараживания воды применяют установки с ртутно-кварцевыми лампами высокого давления и аргоно-ртутные лампы низкого давления. Лампы помещаются над потоком облучаемой воды или в самой воде. В первом случае они снабжены отражателем для направленного облучения, во втором лучи распространяются по окружности во все стороны.

Установка УФ обеззараживания питьевой воды

Несмотря на многие положительные стороны использования ультрафиолетового облучения для обеззараживания питьевой воды, необходимо учитывать, что повышенные мутность, цветность и соли железа уменьшают проницаемость воды для бактерицидных УФ лучей. Поэтому для обеззараживания УФ облучением в большей степени пригодны воды из подземных источников с содержанием железа не более 0,3 мг/л, невысокими мутностью и цветностью. При необходимости УФ обеззараживания воды из поверхностных и некоторых подземных источников требуется ее предварительная очистка (осветление, обесцвечивание, обезжелезивание и др.).

Обеззараживание воды ультразвуком. Бактерицидное действие ультразвука объясняется, в основном, механическим разрушением клеточной оболочки бактерий в ультразвуковом поле. При этом бактерицидный эффект связан с интенсивностью ультразвуковых колебаний и не зависит от мутности (до 50 мг/л) и цветности. Эффект обеззараживания распространяется не только на вегетативные, но и на споровые формы микроорганизмов.

Для получения необходимых для обеззараживания воды ультразвуковых колебаний используют пьезоэлектрические и магнитнострикционные устройства. Продолжительность обеззараживающего действия ультразвука длится секунды.

Обеззараживание воды вакуумом предусматривает обеззараживание бактерий и вирусов пониженным давлением. При этом полный бактерицидный эффект может быть достигнут за 15-20 мин.

Радиационное обеззараживание воды. Ионизирующим (проникающим) излучением называется коротковолновое рентгеновское и γ-излучение, поток высокоэнергетических заряженных частиц (электроны, протоны, дейтроны, α-частицы и ядра отдачи), а также быстрых нейтронов (частицы, не имеющие зарядов). Взаимодействуя с электронными оболочками атомов и молекул среды, они передают им часть своей энергии, производя ионизацию молекул. Освободившиеся при этом электроны, как правило, обладают значительной энергией, которая расходуется на ионизацию еще нескольких молекул воды.

Ионизирующее излучение является мощным безреагентным фактором, действие которого приводит к гибели имеющихся в облучаемой воде болезнетворных микроорганизмов и ее обеззараживание. Первичные продукты радиолиза воды нарушают обмен веществ в бактериальной клетке.

Радиационная очистка и обеззараживание воды имеют следующие преимущества по сравнению с традиционными методами обработки:

ü универсальность, то есть возможность обезвреживать многие органические и любые микробные загрязнители;

ü высокую степень обеззараживания и очистки;

ü высокую скорость обработки и возможность полной автоматизации.

Однако учитывая загрязнение водных объектов специфическими техногенными веществами и по другим причинам, практическое распространение получают комбинированные методы, когда радиационная обработка воды используется совместно с традиционными методами обеззараживания (хлорированием или озонированием).

Термическое обеззараживание воды применяется в основном для обеззараживания небольшого количества воды в детских учреждениях (школах, дошкольных учреждениях, пионерских и летних лагерях), санаториях, больницах, на судах, а также в домашних условиях.

Установлено, что полное обеззараживание моды (уничтожение всех видов и форм болезнетворных микроорганизмов) достигается только в результате кипячения воды в течение 5-10 минут. Однако нужно учитывать, что кипяченая вода лишена не только болезнетворных, но и сапрофитных, безвредных или даже полезных для человека микроорганизмов. В такой воде легко размножаются попавшие в нее уже после кипячения и охлаждения микроорганизмы, что приводит к быстрому ухудшению ее качества. Поэтому кипяченую воду следует сохранять в плотно закрытых емкостях в прохладном месте не более 24 часов.

Фильтрующий кувшин

Плюсы: фильтр-кувшин очень прост в использовании, не требует подключения к водопроводу, процесс очистки не нужно контролировать.

Минусы: небольшой объем очищенной воды (от 1 до 2 л), низкая скорость очистки.

Отличный абсорбент - уголь - поглощает хлор, хлорорганические и органические загрязнения, а дополнительная обработка его серебром предотвращает размножение бактерий.

И фильтр, и чайник

Вполне естественным решением было объединить в одном сосуде, чайник и фильтр для наполняющей его воды. Электрочайник соединяет в себе функции фильтрации и смягчения воды, с фильтрами очистки воды, позволяющими максимально быстро и качественно очистить водопроводную воду от хлора и других примесей, препятствуя образованию накипи.

Насадка на кран

Принцип действия: водоочиститель надевается непосредственно на кран, вода подается в него под давлением.

Плюсы: невысокая цена, удобен для использования.

Минусы: низкая производительность (0,3-0,5 л/мин), необходимо использовать емкость для хранения очищенной воды. Если фильтр не снабжен переключателем, придется включать и выключать его каждый раз вручную.

Практическая работа №1

Контрольно-обучающие тесты

1. Наиболее распространенный способ обеззараживания питьевой воды на водопроводной станции:

а) хлорирование;

б) УФ-облучение;

в) озонирование.

2. При обеззараживании питьевой воды хлорсодержащими препаратами органолептические свойства воды могут:

а) улучшаться;

б) ухудшаться;

в) не изменяться.

3. К физическим методам обеззараживания относятся:

а) использование перекиси водорода;

в) кипячение;

д) олигодинамическое действие серебра.

4. Специальные методы улучшения качества питьевой воды:

а) дезактивация;

б) осветление;

в) дезодорация;

г) дегазация;

д) очистка.

5. Ориентировочные значения дозы хлора при хлорировании нормальными дозами:

а) 1-5 мг/л;

б) 10-15 мг/л;

в) 20-30 мг/л.

6. Методы обеззараживания питьевой воды:

а) коагулирование;

б) хлорирование;

в) фторирование;

г) озонирование;

д) обработка ультрафиолетовыми лучами.

7. Показаниями к применению способа хлорирования с преаммонизацией являются:

а) высокое микробное загрязнение;

б) предупреждение провоцирования запахов;

в) неблагоприятная эпидобстановка по кишечным инфекциям;

г) протяженная водопроводная сеть;

д) невозможность обеспечения достаточного времени контакта воды с хлором.

8. Преимущества озона перед хлором при обеззараживании питьевой воды:

а) улучшает органолептические свойства воды;

б) улучшает органолептические свойства воды и требует меньшего времени контакта;

в) улучшает органолептические свойства воды, требует меньшего времени контакта, более эффективен по отношению к патогенным простейшим.

9. При обеззараживании питьевой воды УФ-излучением органолептические свойства воды могут:

а) улучшаться;

б) ухудшаться;

в) не изменяться.

10. При обеззараживании воды хлорсодержащими препаратами ее органолептические свойства:

а) ухудшаются;

б) не изменяются;

в) улучшаются.

Контрольные вопросы

1. Как классифицируются методы повышения качества питьевой воды?

2. Как производится коагуляция воды? Какие вы знаете коагулянты?

3. Как производится отстаивание воды?

4. Какие вы знаете фильтры, чем они отличаются друг от друга?

5. Охарактеризуйте реагентные способы обеззараживания питьевой воды.

6. Перечислите методы хлорирования. Каковы преимущества и недостатки каждого из них?

7. Что такое хлорпоглощаемость и хлорпотребность воды?

8. В чем заключается гигиеническое значение содержания в питьевой воде остаточного хлора?

9. Как производится определение содержания активного хлора в хлорной извести?

10. Как производится определение дозы хлорной извести по остаточному хлору?

11. Охарактеризуйте физические методы улучшения качества питьевой воды.

12. Какие вы знаете дополнительные методы повышения качества питьевой воды?

13. Проведите сравнительную оценку физических и химических методов улучшения качества питьевой воды.

14. Какие вам известны комбинированные методы повышения качества питьевой воды?


Министерства здравоохранения и социального развития РФ»

КАФЕДРА ОБЩЕЙ ГИГИЕНЫ

МЕТОДЫ УЛУЧШЕНИЯ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ

ВЛАДИКАВКАЗ 2011

Составители:

Ø д.м.н., профессор А.Р. Кусова,

Ø ассистент Ф.К. Худалова,

Ø ассистент А.Р. Наниева.

Рецензенты:

Ø Ф.В. Каллагова - профессор, д.м.н., зав. кафедрой общей и биоорганической химии;

Ø Туаева И.Ш. - к.м.н., доцент кафедры гигиены медико-профилактического факультета с эпидемиологией и курсом ФПДО

Похожие статьи